

Modeling and Testing Flowing Gas in Eunomia

Introduction

Background/Purpose:

- B2.5-Eunomia is a kinetic neutral and multifluid plasma code
- Eunomia replaces Eirene for linear geometries
- Good for modeling experiments using a linear plasma generator

Goals:

- Develop integrated test cases
- Model a uniform gas flowing through a surface
- Test Galilean invariance of collisions

Eunomia Background Info

Geometry

Triangular grid unit \rightarrow Extruded prism \rightarrow Tetrahedron cells

Triangular grid \rightarrow Extruded sector \rightarrow full volume

Multiple sectors approximate vlindrical symmetr ome cells near axis removed for visibi

Simulated Particles Move through Background

Initial paths set background

Background affects collisions

References:

[1] Wieggers, Rob. "B2.5-Eunomia simulations of Pilot-PSI." PhD Thesis, Dutch Institute for Fundamental Energy Research, 2012. [2] Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flow. 2013. [3] Chapman, S. & Cowling, T.G. *The Mathematical Theory of Non-Uniform*

Gases. 1958.

COURTNEY JOHNSON¹, advised by J.A. SCHWARTZ² and R.J. GOLDSTON²

¹Rowan University, ² Princeton Plasma Physics Laboratory

- Phi-velocity flow from side wall

Parameters of Tests:	
Particle Type	Lithium
n (particles/ m^3)	1.0E20
d (m)	2.8517E-10
T (eV)	0.0431
m (amu)	6.941